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Note 

Multi-spin Coding: A Very Efficient Technique for 
Monte Carlo Simulations of Spin Systems 

1. INTRODUCTION 

Computer simulations have often constituted an invaluable tool for the understanding 
of thermodynamical properties of many body systems. These simulations are 
generally done by the Monte Carlo method and the size of the system which can be 
considered is limited by the availability of memory space and computer time. The 
purpose of this note is to illustrate a technique which allows one to sensibly reduce 
the memory space and central processor (CP) time required by a Monte Carlo 
simulation whenever the states of the system are specified by a collection of spin 
variables ranging over a limited number of different values. This technique, which we 
shall refer to as multi-spin coding (MSC), permits one to perform simulations which 
would be otherwise unfeasible or to substantially lower the burden that the same 
simulation would place on the computer, if done by conventional methods. MSC has 
been tested in a variety of investigations performed at the Brookhaven National 
Laboratory [l-5]. As we have learned recently, moreover, a technique analogous to 
ours in the general idea, although quite different in the details, was successfully used 
a few years ago by Friedberg and Cameron [6 1. 

The basic idea of MSC is that only few binary digits are necessary to record the 
value of a spin variable, which ranges over a finite and rather small set. The memory 
words of a computer, on the other hand, being designed to represent real numbers 
with a high degree of accuracy, contain many bits. It is therefore possible to record 
the values of several spins in the same memory word (MSC). If this packing of infor- 
mation is done suitably, beyond reducing the memory requirements, it also allows 
arithmetic operations involving many spins simultaneously to be performed and thus 
lowers the CP time needed for the simulation. 

In this note we shall not present any specific program, but will rather illustrate the 
most salient features of the algorithm. We consider the particularly simple case of the 
Ising model in Section 2, generalize the method to other spin systems in Section 3 and 
present a few concluding remarks in Section 4. 

2. MULTI-SPIN CODING FOR THE ISING MODEL 

The Ising model is defined by a collection of spins which can take only two values, 
denoted by * 0 and 1. We shall assume that the spins occupy the sites of a two- 
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dimensional square lattice and will label them si,j (i being the row, j the column 
index). The generalization to other lattices or other dimensionalities is 
straightforward. The energy of the system is the sum of the energies associated with 
the bonds between nearest neighbor pairs. The energy of a bond, in suitable units, is 
defined to be 0 if the neighboring spins have the same value, 1 otherwise. 

Following a method introduced by Metropolis et al. [7] to deal with a different 
problem, a dynamical simulation of the thermodynamical behavior of the system at 
temperature T is done as follows. One considers a definite spin s and evaluates the 
energy E of the four bonds involving s. Then the energy E’ obtained with a different 
value s’ of the spin is evaluated (in this model, of course, s’ can only be the 
complement of s). If E’ is lower than E, then the spin is set to the new value s’. If 
E’ > E, a (pseudo)random number R with uniform distribution between 0 and 1 is 
generated and the value of the spin is changed only if R < exp(-(E’ - E)/kT) (k is 
the Boltzmann constant). After s, a new spin of the lattice is thus analyzed and so on, 
until all spins are probed. This completes a Monte Carlo iteration. Many iterations 
are performed in succession and it is possible to show that the probability of encoun- 
tering any definite spin configuration in the system eventually becomes proportional 
to the Boltzmann factor exp(-E&r), where Etot is the total energy of the 
configuration. Clearly, the computation involves two steps: the evaluation of the 
energy associated with s, first, and then the stochastic change of the spin. It is the 
first step which is done in a particularly efficient way by the MSC technique. 

To be specific, we shall assume that the memory words of the computer consist of 
60 bits (as in the case of the CDC computers, on which the algorithm has been 
implemented). But this is only for sake of exemplification: most of the details of the 
method may be trivially modified to adapt it to different situations. We will then use 
groups of three bits within the memory word to record the values of different spins, as 
follows. The first bit in the group takes value s, the other two are zero (bits are 
enumerated from the right). Twenty spins are coded in a single memory word. We 
shall assume that the horizontal size of the lattice is 2ON, with N an integer greater 
than one. The vertical size is arbitrary. The spins si,j are then organized in memory 
words S(Z, J), 1 <I < N, J= j, in the following way (see Fig. 1): 

S(1, J): Sl,jSN+l.jS2h'+l,j "' 'l9N+l,j3 

S(2, J): '2,jsNt2,js2Nt2.j "' s19Nt2,jY 

S(N, J): sN.js2N,js3N,j “’ S20N,j’ 

N > 1 is needed to preserve the statistical independence of the readjustments of the 
spins. If we consider the spins in S(Z, J), it is obvious that their neighbors are 
contained in S(Z - 1, J), S(J + 1, J), S(Z, J - l), S(Z, J + l), with neighboring spins 
occupying the same position inside the memory word (at least for Z # 1 and Z # N, 
for these values of I, see below). On the other hand the “exclusive or” logic 
operation, 

S = XOR(S1, S2) = sl.AND.(NOT.s2).OR.s2.AND.(NOT.S1), (2) 
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FIG. 1. Assignment of spins to memory levels in MSC. 

produces a zero whenever the corresponding bits in Sl and S2 are equal, a one 
otherwise. Thus the instruction 

E = XOR(S(Z, J), S(Z - 1, J)) + XOR(S(Z, J), S(Z + 1, J)) 

+ XOR(S(Z, .Z>, S(Z, J - 1)) -i XOR(S(Z,(J), S(Z, J + 1)) (3) 

will generate a memory word, which, in each of the 20 groups of three bits of E, will 
contain the energy of the four bonds emanating from the corresponding spin in S(Z, J) 
(we see now why it has been convenient to allow for some redundancy in the packing 
of spins: the possible energy values range from 0 to 4 and require three bits for their 
coding). Notice that the bond energies of all 20 spins are evaluated simultaneously! 

The values Z = 1 or Z = N require just a little more attention. If one assumes, for 
instance, periodic boundary conditions, the left neighbors of the spins in S( 1, .Z) are in 
S(N,J), but shifted in position: 

S(1, J): SI,jSN+I,jS*N+I~ *” s19N+l,.f3 

S(N, J): 
(4) 

sN,js2NJs3N..i ‘*’ '2ON,j' 

Thus a shift of the content of the word S(N, J) is necessary before it is used in the 
step producing E. But this is straightforward to include in the program. 

Eventually, the decision on whether to keep the current value of the spin or change 
it requires floating point arithmetic and must be done for each spin separately. The 
individual values of the bond energies, however, are extracted very efficiently in a 
loop. 

1 DO lOK= 1,20 

2 ZE = E.AND.7 (5) 

10 E = SHIFT(E, 3). 
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(The SHIFT@, N) instruction, implemented in the CDC FORTRAN compiler, 
generates a cyclic permutation of the bits in the word A by N spaces to the left. N 
must be positive and a cyclic permutation by M spaces to the right is obtained setting 
N = 60 (number of bits in a word) - M). 

The logic product in instruction 2 between E and 7, an integer which in binary 
representation consists of 57 zeroes followed by 3 ones, acts as a projection, which 
extracts the last three bits of E. These provide the value of the energy of the 
individual bond, At the end of the loop the bits in E are shifted by three places and a 
new spin is analyzed. If IE, which ranges from 0 to 4, is increased by one, it may be 
used as the index for an array of Boltzmann factors. The increase can be done most 
efficiently before the loop with an instruction 

E=E+ 1111111111111111111B. (6) 

The symbol B after a number indicates an octal constant. The octal constant added 
to E has a one in each of the 20 three-bit groups and increases all the bond energies 
by one unit. Once again, we see that an arithmetic operation may be done in parallel 
for all the 20 spins at the same time. 

3. OTHER SPIN SYSTEMS 

The expression for the energy of the interacting spins may take a variety of forms, 
according to the model which is being considered. In many cases it is possible to 
devise an algorithm, which will generate the required values of the energy with logic 
instructions and will thus allow the simultaneous processing of all the spins stored in 
the same memory word. No general rule for this algorithm can be given and some 
ingenuity may be occasionally required. We exemplify in this section a few cases 
where the MSC technique may be profitably used. 

In the simplest generalization of the Ising model, known as the q-state Potts model, 
the spin can take q integer values between 0 and q - 1. The interaction energy 
between neighboring spins s and s’ is still 0 if s = s’, 1 if s # s’. With three bits per 
spin, models with q up to 8 can be considered and the interaction energy between the 
spins in the words Sl and S2 is simply given by the instructions 

1 S = XOR(S1, S2) 
(7) 

2 E = OR@, SHIFT(S, 59), SHIFT(S, 58)).AND.11111111111111111111B. 

The “exclusive or” in instruction 1 leaves three zeroes in each of the three-bit groups 
in S if and only if the corresponding spins in Sl and S2 are equal. In the second 
instruction the logical sum of the first, second, and third bit in each group is 
performed (to move the second (third) bit one (two) places to the right, the entire 
content of the 60-bit word is rotated cyclically 59 (58) positions to the left; the 
logical product with the octal constant projects out the first bit of each group). The 
result will be zero if the two original spins are equal, one otherwise. 
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In many instances, the spin variables should be considered as group elements and 
the interaction energy is obtained first combining two or more spins according to the 
group multiplication and then evaluating a class function of the result. This occurs in 
particular in lattice gauge models, where spins are defined on the links between 
neighboring sites, rather than on the sites themselves, and the four spins associated 
with the links forming an elementary square are combined to define the interaction 

181. 
In some cases it is straightforward to reproduce the group operation. As an 

example, consider the cyclic group of four elements, Z,. The values of the spins, 
between 0 and 3, are coded in the first two bits of the three-bit groups (recall that we 
enumerate bits from the right). Then instructions 

1 S=Sl +s2 

2 S = S.AND.33333333333333333333B 
(8) 

then combine the spins in Sl and S2 according to the group multiplication (i.e.. 
addition mod 4) and place the result in S. In instruction 1 the spins in Sl and S2 are 
added; the redundancy provided by the zeroes in the third bits avoids carry-overs 
between different spins in the same word. In the second instruction the logical 
product with the octal constant, which consists of the binary digits 011 repeated 
20 times, deletes the possible carry-over bits in the sums and thus converts ordinary 
addition into addition modulus 4. 

Additions modulus higher powers of 2 may be performed also, but more bits must 
be allocated for the coding of each spin and fewer spins may be stored in the same 
memory word. As an example of a different group multiplication, the reader may 
easily satisfy himself that the sequence 

1 S=Sl +S2+ 11111111111111111111B 

2 S3 =S.AND.44444444444444444444B 

3 S=(S.AND.33333333333333333333B) 

+SHIFT(S3,58)-11111111111111111111B 

(9) 

generates addition modulus 3. (The SHIFT instruction in the third line moves all bits 
in S3 two places to the right.) 

Eventually, as the complexity of the combination rule of the spins increases, the 
use of a logical algorithm may become impractical and recourse to a multiplication 
table may be more convenient. The advantage of MSC then reduces essentially to the 
saving in memory space. However, the combination of the many spins in the same 
memory word can be still done quite efficiently, as illustrated by the following 
example. 

We assume now that only 10 spins, denoted by numbers ranging from 1 to 7, are 
coded in Sl and S2. The bits in position 4 + 6, 10 + 12,..., 58 + 60 are zero. 
Moreover, we assume that the result of the group multiplication of two spins s and s’ 
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is recorded in the array MT(Z), with Z = 8s + s’. Notice that multiplication of a 
binary number by 8 is equivalent to shifting its digits three positions to the left. Then 
the instructions 

1 Z = SHIFT(S1,3) + S2 

2 s=o 

3 DO6K=l,lO 

4 S = S + MT(Z.AND.77B) 

5 Z = SHIFT(Z, 6) 

6 S = SHIFT(S, 6) 

(10) 

perform the group multiplications of the spins in Sl and S2 and place the results in 
S. In instruction 1 the values of the spins in Sl and S2 are combined so as to 
produce in Z 10 indices, which will become entries of the multiplication table. The six 
bits of the individual indices are projected out by the logical product with octal 77 in 
instruction 4 and the result of the group operation is added to S. Finally the bits in Z 
and S are rotated cyclically to proceed to two new spins. The loop, being very short, 
generally will tit into the stack of current machine instructions and will be performed 
very efficiently by most computers. 

4. CONCLUSIONS 

The MSC technique has been used at the Brookhaven National Laboratory for a 
variety of Monte Carlo simulations. In several of these the quantum mechanical 
properties of lattice gauge models relevant to particle physics have been studied. The 
quantum mechanical behavior of the system is reproduced by a sum over all its 
space-time configurations (continuous time being replaced by a finite number of 
points) weighted by a measure factor exp(-( l/h) S), where h is Planck’s constant and 
S is the total action of the configuration, a positive definite quantity after a Wick’s 
rotation to imaginary time. Thus one effectively simulates the behavior of a four- 
dimensional statistical system and, for any acceptable size, the number of spin 
variables is extremely large. It is in studies of this kind that we have found the MSC 
technique most helpful. Figure 2 illustrates one of our results [2]. It displays the 
behavior of a Z, gauge model (the spins, ranging in value between 0 and 7, are added 
modulus 8) under slow variations of the coupling constant of the system. The 
parameter /I, which is proportional to the inverse squared coupling constant and 
which plays the same role as l/kT in the analogy with a thermodynamical system, 
was varied in steps of lop3 after each Monte Carlo iteration and the value of the 
action, E, was measured. (These values are plotted on the graph every 50 iterations.) 
As p varies from 3.5 down to 0 and then up again to 3.5, the system undergoes a 
thermal cycle and the appearance of two hysteresis loops (at /I N 1 and /.I- 2.8) 
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FIG. 2. Behavior of the internal energy (or average action), versus inverse temperature (or inverse 
squared coupling constant) in the simulation of a four-dimensional lattice gauge model, with gauge 
group Z,. 

signals the existence of two phase transitions. (That these loops do not correspond to 
spurious relaxation effects is confirmed through further analysis.) The system 
extended for 8 sites in each of the three spatial directions, 20 sites in the temporal 
direction, with periodic boundary conditions, and therefore contained 40,960 spins, 
the spins being defined on the links of the lattice. Yet the computer time required for 
a Monte Carlo iteration with its 40,960 individual upgrading steps, each involving the 
evaluation of the action of six different elementary squares of the lattice, was only 
259 msec on a CDC 7600. The gain in time through the use of MSC in the case of 
Z,v gauge theories can be seen in the following table, where the average times needed 
to upgrade a single spin variable with a standard program and one using MSC are 
compared. The programs were run on a CDC 7600 with a clock period of 27.5 nsec. 

The basic idea of multi-spin coding is straightforward; nevertheless it is not 
apparently widely used. We have presented it in some detail here because we feel that 
it may constitute an invaluable computational tool whenever the availability of 
memory space and central processor time effectively limit the Monte Carlo analysis 
of a statistical spin system. 

Average Time per Spin @set) 

N Standard MSC 

26.01 3.05 
25.51 4.69 
25.71 3.78 
25.45 5.85 
26.06 5.71 
25.45 **** 
25.39 6.21 
25.33 **** 
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